Cyclic symmetry and adic convergence in Lagrangian Floer theory
نویسندگان
چکیده
منابع مشابه
Cyclic Symmetry and Adic Convergence in Lagrangian Floer Theory
In this paper we use continuous family of multisections of the moduli space of pseudo holomorphic discs to partially improve the construction of Lagrangian Floer cohomology of [13] in the case of R coefficient. Namely we associate cyclically symmetric filtered A∞ algebra to every relatively spin Lagrangian submanifold. We use the same trick to construct a local rigid analytic family of filtered...
متن کامل2 00 6 Spectral Invariants in Lagrangian Floer Theory
Let (M,ω) be a symplectic manifold compact or convex at infinity. Consider a closed Lagrangian submanifold L such that ω|π2(M,L) = 0 and μ|π2(M,L) = 0, where μ is the Maslov index. Given any Lagrangian submanifold L, Hamiltonian isotopic to L, we define Lagrangian spectral invariants associated to the non zero homology classes of L, depending on L and L. We show that they naturally generalize t...
متن کاملLagrangian Floer Theory on Compact Toric Manifolds I
The present authors introduced the notion of weakly unobstructed Lagrangian submanifolds and constructed their potential function PO purely in terms of A-model data in [FOOO3]. In this paper, we carry out explicit calculations involving PO on toric manifolds and study the relationship between this class of Lagrangian submanifolds with the earlier work of Givental [Gi1] which advocates that quan...
متن کاملLagrangian Floer Theory on Compact Toric Manifolds Ii : Bulk Deformations
This is a continuation of part I in the series (in progress) of the papers on Lagrangian Floer theory on toric manifolds. Using the deformations of Floer cohomology by the ambient cycles, which we call bulk deformations, we find a continuum of non-displaceable Lagrangian fibers on some compact toric manifolds. We also provide a method of finding all those fibers in arbitrary compact toric manif...
متن کاملKnot Floer homology in cyclic branched covers
In this paper, we introduce a sequence of invariants of a knot K in S3 : the knot Floer homology groups ĤFK(Σm(K); K̃, i) of the preimage of K in the m–fold cyclic branched cover over K . We exhibit ĤFK(Σm(K); K̃, i) as the categorification of a well-defined multiple of the Turaev torsion of Σm(K)− K̃ in the case where Σm(K) is a rational homology sphere. In addition, when K is a two-bridge knot, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 2010
ISSN: 2156-2261
DOI: 10.1215/0023608x-2010-004